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i Gottfried Wilhelm Leibniz (1646-1716)

o« German mathematician and
philosopher

o Credited for, along with
Newton, the discovery of
calculus

« Invented the use of [ and d.




‘_L Isaac Newton (1643-1727)




i Kepler’s laws of planetary motion

[ The orbit is an ellipse \

with the sun at one
of the foci.

2. A line joining a ' @

planet and the sun
sweeps out equal
areas in equal time.

3. The squares of the orbital periods are directly
proportional to the cubes of the semi-major axes.




‘_L Kepler’s laws of planetary motion

) 4 \\

.
Inverse
p— T <R3

square law
- / > <
C tion | i )

onserva —> | Equal area
of momentum
- / > <
Diff tia]l ( \
Ditterentia —> | Elliptic orbit
equation

R ) )




‘_L Inverse square law

ﬁentripetal force: Assume inver@
square law
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‘_L Conservation of angular momentum

/ Angular \

N
dA 1 2 do momentum

dt 2 dt
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‘_L Elliptic orbit

/ Newton second law:
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‘_L Elliptic orbit

//rmzré:o\ N

b . In fact, this
r°e +2rrd =0 is known
d (r26)=0 already from
dt = conservation
r*6 — of angular
) — 1 momentum.
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‘_L Elliptic orbit
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‘_L Elliptic orbit
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‘_L Elliptic orbit
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The equation is simplified to

u"u =1
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‘_L Elliptic orbit

ﬁf he general solution is \

4 )
u+u=1
u=1+scos(6—a)
\_ J
( . a ) Recall:
I = a
1+ gcos(@—a) u=2
\_ Y, r
which represents a conic curve

\with focus at the origin. /




‘_L Edmond Halley (1656-1742)

K Claim that the comet
sightings of 1456, 1531,
1607 and 1682 related to
the same comet.

e Predicted that the comet
would return in 1758.

« The Halley’s comet was
seen again on 25th Dec

\ 1758. / e, 4




Electromagnetism

/Gauss’ law
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‘_L Electromagnetism

/Gauss’ law for magnetism \
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‘.L Electromagnetism

/Faraday’s law

s ot

where
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‘_L Electromagnetism

/Ampere’s law

o oD ’
Bxdl = .1 + E
[i 2 Hol T Hoé&y 3’[}
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i Maxwell’s equations

/ Name Integral form Differential form\
Gauss’ ﬁ:g.d,&:& T.E_L
laW S ‘90 80
Gauss ﬁé.dﬁ\:o T.B-0
law 5
Faraday’s Edi - _ %5 o.g__ 0B
law - ot ot
Amperes Bxdl = g4l + p158, 0D §x§=,uoj+,u080§
\ law it &/




‘_L Electromagnetic wave

/ In vacuum, Maxwell’s \

equations become

" V.E=0 I

V-B=0

VXE=——

VxB=p,ec, —




‘_L Electromagnetic wave

@ing the identity [

We have [ 9x(FxE)=9(9-E)-v2E)
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Electromagnetic wave

o 52E \
- (vt ZE |

ot

The above equation shows the existence of wave of oscillating
electric and magnetic fields which travel at a speed

- ~ 300,000kms™
\ Hoéo

which is very close to the speed of light.

Maxwell then claimed that light is
@ fact electromagnetic wave. /




Electromagnetic wave
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Special relativity

H/Iaxwell’s equation in tensor form \

C( )
Fer, =27 5s
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General relativity

According to Einstein field equation, gravity is \
described as a curved space time caused by matter

and energy.
{ Ra'g

1 877G
IS T‘”]

R,;: Riccl tensor
R :scalar curvature

Y.5: metric tensor

\ T, energy-momentum-stress tensor /




‘_L Schwarzschild black hole

m)lack hole with no change or angular moment@

Schwarzschild metric:

-1
[( 26M Yy (120 Q]
r I




i Expanding universe

Robertson-Walker metric \
ds? = c2dt? — R*(t)(dz? + (1 )d02?) |

[ sin y, curvature>0
S(y)=4 x  curvature=0

sinhy, curvature<0

\_

"




‘_L Schrodinger equation

ﬁl quantum mechanics, particles are\

described by wave function satisfying
. h dy
( =H
L 27z dt W}

h : Planck’s constant

where

Y . wave function

K H : Hamiltonian operator /




i Schrodinger equation

/ Harmonic Oscillator

— E=hwin +% 1

/\HHHHHH\HH

Electron orbitals \




‘_L Black-Scholes’ equation

glack—Scholes model the price of an option by\

{6\/ +1c7282 oV +rSa—V—rV :O}

ot 2 0S? 0S

where V : price of the option
S : price of the underlying instrument

o : volatility

\ I' : constant interest rate /




‘_h Calabi’s conjecture

Eet (M, J;) be a compact
Kahler manifold. Any

closed (1,1)-form which
represents the first
Chern class of M is the
Ricci form of a metric
determines the same

@homo]ogy class as ;.




‘_h Calabi’s conjecture

ﬂlquivalent to the existence of solution of the\

following complex Monge-Ampere equation

/de{giﬁ o Jdet(gijylzeXp(F) \

0Z,0Z

where 20
jM exp (F) =Vol (M)

Proved by Yau Shing Tung

\\in 1976.




‘_L Navier-Stokes equation

@Vier—Stokes Equation describe the \
motion of viscous fluid.

[ p(%+v-ij=—Vp+,uAv+f ]

: velocity

where \Y
o :density
P :pressure

f :external force

Qle continuity equation reads [V -V = O] /




‘_L Poincaré’s conjecture

Every compact
simply-connected 3
dimensional manifold
is homeomorphicto |
the 3 dimensional
sphere.




i Generalized Poincaré’s conjecture

If a compact n dimensional
manifold is homotopic to the
n dimensional sphere, then
it 1s homeomorphic to the n
dimensional sphere.



‘_L Generalized Poincaré’s conjecture

Dimension Solver Year | Field’s Medal
1or?2 Classical
5 orabove | Stephen Smale | 1960 1966
4 Michael Freeman | 1982 1986
3 Grigori Perelman | 2003 2006




i Ricci flow

/Proved by Perelman by using Ricci flow defined\
by Hamilton.

i O

Oi;

ﬁtj = —2R;
N Y

Perelman declined both the Fields medal
Qnd the Clay Millennium Prize. /




‘_L Definition

/ An Ordinary Differential Equation \
of order n is an equation of the form

[F(x; y; y’; y”; ;y(n)) — OJ

where Y™ denotes the nth derivative

\of y. /




‘_L Definition

-

If there are more than one
independent variable and the
equation involves partial
derivatives, then it is called
Partial Differential Equation.

~




‘_L Examples

ﬁirst order ODE:

"

1) Linear equations

4 )
a) ﬂ+4y=0
dx
b) %—xy:cosx
. x y

i1) Bernoulli equation

Y+POIY =a()y"|

/




‘_L Examples

ﬁecond order ODE:

1) Linear equations

( | B | 1

a) Yy'=2y-y
"o 2 1 3X _ =

\b) y'—Xy'+e’y 23|nxj

\

11) Non-linear equations

(a) y'=y?

K \b) y'+yy'=e )




‘_L Examples

/boE: ?

i) Elliptic [uxx +u,, =0

ii) Parabolic U, =u,, +u,

11) Hyperbolic \ U, +U,, —U; =

\_




Solution

Differential equation Solution \
4 ﬂ o X2 N Xy ) 4 3 5 5 B )
 ax T 3y Il 2XTY + X7y —C)

y'—-3y'—4y =5 y=Ce”*+C,e* —xe*
u, —4u, =0 u=cos(2x—t)"

\ J \ J
* Particular solution




‘_L IVP and BVP

\

Gitial value problem:

-

1

y'—3y'+2y =sinx, xe[0,27]
y(0)=0, y'(0) =1

~

Boundary value problem:

.

({

] )
y"'—3y'+2y =sinx, xe[0,27]

y(0)=0, y(27) =-2
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Antson can always reach

i the other end when u > 0.

Whenu=0.0landv =1

~

0_.())1ms‘1
%« « 1ms™
—
t+1
/Cd A (t)=0
% . x(t)=
e S T 0.01 _, In(t +1) =100
C x(0) =1 = t=e"-1~27x10%
(D) It takes about
. B B N\t +
Sol: x_(t+1)[1 G j 8.5x10°°years

/




‘_L First order equation

/The first order ODE

dy
L&— f(X,Y)}

can be interpreted as a direction
field. The integral curves are
\solutions of the equation.

~

/




Direction field
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Direction field

by _10_
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Direction field
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‘_h Direction field

o L B B ——




Direction field
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Kim Ung Yong

Kim Ung Yong: Korean prodigy, born 3 March 1962
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2 Nov 1967, Fuji TV Japan
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